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Abstract.  In the window approach to quasicrystals, the atomic position spade embedded

into a spaceE” = E) + E;. Windows are attached to points of a lattitec E". For standard
fivefold and icosahedral tiling models, the windows are perpendicular projections of dual Voronoi
and Delone cells fromk. Their cuts by the position spagg mark tiles and atomic positions. Inthe
alternative covering approach, the position space is covered by overlapping copies of a quasi-unit
cellwhich carries a fixed atomic configuration. The covering and window approach to quasicrystals
are shown to be dual project®)- and V-clusters are defined as projections to position sggce

of Delone or Voronoi cells. Decagon&l-clusters in the Penrose tiling, related to the decagon
covering, and two types of pentagor2iclusters in the triangle tiling of fivefold point symmetry

with their windows are analysed. They are linked, cover position space and have definite windows.
For functions compatible with the tilings they form domains of definition. For icosahedral tilings
the V-clusters are Kepler triacontahedra, ielusters are two icosahedra and one dodecahedron.

1. Introduction: windows versus coverings

The standard approach for quasicrystal structure uses the projattiroic windows these

are polytopes with centres located at points of the unit cell from a lattisgean embedding
spaceE™ = E |+ E, . Atoms are then located on position sp@geby parallel cuts through the
windows, compare Katz and Gratias [8, 9] for icosahedral examples. The alternative project
of coveringsn quasicrystals was introduced by Gummelt [6], based on earlier concepts due to
Burkov [3] and Conway [4]. The Penrose tiling was interpreted in [6] as a system of decagonal
covering clusters with overlaps. These clusters were related to the concepuabiaunit

cell by Jeong, Steinhardt al [16—18]. The full quasicrystal structure is then composed from
overlapping atomic configurations on copies of the quasi-unit cell. Moreover, Steishaitdt
interpret these atomic configurations from the point of view of local energy. This interpretation
takes up earlier work by Janot [7]. For a comment we refer to Urban [19].

What is the relation of the projects of coverings and windows to one another? What are
the covering clusters and links for a given tiling? What is the meaning of a (quasi-)unit cell of
a quasicrystal whose points, in contrast to crystals, are not related by the action of a translation
group? In the present paper we try to answer these structure questions. We confront both
projects from the point of view of an embedding space, a lattice, its Voronoi ¥elts dual
Delone cellsD?, D?, ... [5], and corresponding tilings. The Voronoi and Delone cells of the
lattice in the embedding space are the basis for a set of canonical tilings [10]: the windows for
these tilings are perpendicular projections of Voronoi or Delone cells.

We shall show that windows and coverings are dual projects. We define and analyse
clusters as projections to position space of Delone or Voronoi déﬁlsDﬂ’, ...orv,. We
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term themD-clusters orV-clusters respectively. We determindomains of definition for
functions on quasiperiodic tilingand show that they can be related to set¥ aflusters orD-
clusters. These concepts are introduced and illuminated in section 2 with the Fibonacci tiling,
projected from the square lattice, and in section 3 with a tiling projected from the lagtide
section 4 we determine for the Penrose—Robinson tiling, projected from the lajti@g, its
V-clusters and obtain the decagon covering of Gummelt [6]. In section 5 we construct for the
triangle tiling, dually projected from the lattick, [2], two pentagonabD“, D?-clusters and the
covering. In section 6 we sketch the clusters for dual icosahedral tilingsy Ttlesters from

the primitive andF -lattice are Kepler triacontahedra, the thi@eclusters from the--lattice

are icosahedra or dodecahedra.

2. Clusters from Delone cells in the Fibonacci tiling

2.1. Fibonacci tiling and klotz construction

Consider the Fibonacci tiling constructed from the square lattioé edge lengthy in E2 by
duality [11]. Its Voronoi cellsV (¢) are squares centred at all lattice poiptdts dual Delone
cells D are squares centred at all vertices of the Voronoi cells. All Delone cells belong to a
single translation orbit. A 2D fundamental doméirin £2 under the action oA is provided

by a single Voronoi celV or, equivalently, by a single Delone céll. The 1-boundarie® of

a Voronoi cell are its four edge lines. The dual 1-boundafiésf a Delone cell are its four
edge lines. Pair®, P* of dual 1-boundaries intersect in midpoints of the edges of the squares.
Define the decompositioA? = E; + E, in the usual fashiony; runs, w.r.t. a densest lattice
plane ofA, along a line of slope 1, r = (1++/5)/2, respectively. Thklotz constructiofil3]

for the Fibonacci tiling [11] arises as follows: for each intersecting paiP*, form at its
intersection point the convex klotz cels ® Py The two klotz cellg{ A, B), see figure 1, are

two squaresA, B) of edge lengthL| = 7|S|, |S| = s/+/T + 2, respectively, with boundaries
perpendicular or parallel tf. Any line with pointsx = x; +c,, —oco < x < oo intersects

the klotz construction in a Fibonacci tilirlg* with the tiles(L := A, S := B)). A window

for the full local isomorphism class of all tilings* may be taken as a perpendicular interval of
length|L| +|S| centred at a lattice poigt. This interval is the perpendicular projectivin (¢)

of the Voronoi cell and appears in the klotz construction at all positions of lattice ppints

2.2. Quasiperiodic functions and fundamental domains

Atomic densities or electronic potentials in quasicrystals require functional analysis on the
position space. We recall the following relations Bt under the geometric group action of

g €A x,x' €E" (q,x) > x' =x+q,afundamental domaiis a subsef € E" which has
exactly one point from each translation orbit. The geometric group action yields for functions
f on E" the group operatorg, : f(x) — (T, f)(x) ;= f(x —¢). Suppose now thaf is
periodic onE™ moduloA. We define a fundamental domain fpias a subsef € E" such that

any value off on E" — F is obtained by the group action. Clearly a fundamental domain for a
periodic functionf can be identified with fundamental domaifor the geometric action of.

Proposition 1. Two klotz cellg A, B) form afundamental domaitF for functions f on E2
periodic moduloA.

Proof. The pairs of dual boundaries underlying the cés B) are representatives of different
translation orbits undek. The cells do not overlap and together have the same volume as the
\Voronoi square. |
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Figure 1. The square lattica of edge lengtly in E2 has Voronoi squareg (¢), centred at lattice
pointsg (full squares), and Delone squai@scentred at Voronoi vertices (open circles). The lattice
admits a periodic tiling into two squaréd, B) of edge lengths$L| = 7|S|, | S|, called klotz cells

and shown on the left-hand side. The edges of these squares run along dirgckiorizontal,x |
vertical of sloper —1, = with respect to a densest lattice line. A pair, B) of two such squares
form a fundamental domaifi for the lattice. The intersection of a parallel line with the two squares
(A, B) forms a Fibonacci tiling* with tilesL = A, S = B). The window of the tiling isV' (¢)
centred at lattice pointg. Its size is indicated by a perpendicular bar on the left-hand side. The
Delone projection®) to position spac&) centred at Voronoi vertices (heavy lines at open circles)
provide fundamental domains for functions compatible with the Fibonacci tiling. They bound pairs
AU B andB U A from below and above. On parallel line sections they give risB{dusters
(LS) or (SL). A second periodic tiling inE2 with two rectanglesA’, B') is shown on the lower
right-hand side (dashed lines). Its intersection with a horizontakligex; +c1, —oo < x < oo,
yields a deflated Fibonacci tiIirr@j;i1 with tiles (L', §) of length scaled by the factarl. The
union of the two tilings is shown in the middle part. In the parallel subtiling from this union, any
cluster(LS), (SL) of 7* gets the symmetric subdivisiail.’S’L’), and consecutive clusters are
disjoint or linked by a tileL’.

Quasiperiodic functions on a parallel line secti@me characterized as follows: take
a function f, defined by its values on the two celg, B) (or on any other equivalent
fundamental domainy, and repeated o&? modulo A. The restriction off to its values
onalinex = x +c, —00 < x| < oo gives rise to a quasiperiodic function on this line. The
fundamental domain for a quasiperiodic functithvat determines its value everywhere on the
1D horizontal line is seen in the embedding sp&éeas a 2D fundamental domain w.r.t. the
action ofA.

Quasiperiodic functions of this general type do not take the same values on different
passages of the line throughor throughB, and so they are not compatible with the Fibonacci
tiling 7*. The class of quasiperiodic function'scompatible with the tiling7* on the line
E, must have the following restricted property, as discussed for example in [11]: on each of
the two chosen klotz celléA, B), its values must bendependent ok,. These values by
repetition underA generate on any parallel line section a quasiperiodic function which takes
the same values on each passage througih B. We refer to Arnold [1] for a discussion of
quasiperiodic functions along similar lines.

Definition 2. Let the tiling7 consist of a minimal finite s€p;) € E; of prototiles p; and
their translates appearing if. A fundamental domain for a quasiperiodic functignon
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E| compatible with the tiling is a subset of points € E; which contains one and only one
translate in7 of any point from any prototile. A fundamental domain with this property will be
denoted byF (7, A). Itdepends onthetilin@, the latticeA, and the projectiol£” = E|+E .

The volume of the fundamental domaindX7, A)| = >, |p;|. For the Fibonacci tiling we
find the following proposition.

Proposition 3. The fundamental domai(7*, A) for any functionf compatible with the
Fibonacci tiling 7*, can be taken as a line interval ifi; of length|L| + |S|, consisting of
a short and a long interval of the tiling™*. The values off on the two intervals are then
extended on each klotz c€l, B) to a 2D function independent of . By repetition modulo
A and intersection with a parallel line they give rise to a particular quasiperiodic function.

2.3. LinkedD-clusters

The parallel projection® of the Delone squares are line sections of lengtht |S|. These
projections appear in the klotz tiling at the Delone centres. Each one separate$i @gir

on top from a pairn(A, B) of klotz cells at the bottom. The boundary line itself we assign
for uniqueness to the top pair of klotz cells. If a horizontal intersection line passes the top or
bottom pair, any one of the two cuts provides a fundamental dosgirf, A). Both the §L)

and the £.5) combination we term @®-cluster.

Proposition 4. The Fibonaccitiling7*, (L, S)) is equivalentto a chain of linkefd-clusters of
type(LS), (SL). The clusters can be locally determined: Each one is equivalent to the parallel
projection Dy of a Delone cell and forms a fundamental domaiiZ*, A). Consecutive
clusters are disjoint or linked by a til§ in the form(L(S)L).

Proof. Consultfigure 1: inthetiling™, disjoint clusters form from all consecutive stringss(
except for the stringLSLLS). This string is interpreted with three clusters(&$S)L)(LS),
with the first two clusters linked by the tilg a

2.4. Symmetric subtiling and windows forclusters

The D-clusters as parallel projectiod; carry the two alternative subtilind€.S), (SL). We
can remove this asymmetry by use of the deflated subfiling Its new rectangular klotz cells
(A’, B') in E? are shown with dashed lines in the lower part of figure 1. The deflated tiles from
parallel sections are’, §’) = t (L, S). In the union of the original and deflated tiling, all
projectionsD; and hence alD-clusters get the symmetric subtiliig S), (SL) — (L'S'L’).
From the point of view of the deflated tiling, all strings’L’) separate disjoint clusters, all
strings(S’L’S’) mark consecutive clusters linked by a tllé Note that theD-clusters are not
fundamental domains with repect to the deflated tiling! So far we have not implemented the
action of the point group, generated here by inversion, on functfon¥his would require
restricting their domain to the counterpart of the asymmetric unitin the terminology of periodic
crystallography.

The deflated tilingr *; allows us to determine theindow for centres ob-clusters the
centres correspond to the midpoints of its t§ésTherefore, their windows are the projections
B/, of length|L| of the rectangle®’, centred at the vertices of Voronoi cells in figure 1.
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3. V-clusters in a tiling with the lattice A,

The klotz construction uses the duality between Voronoi and Delone cells for a single lattice.
For illustration of duality we choose the root lattige in £2. Its Vioronoi cellsV are hexagons
centred at lattice points, its Delone cells are two types of trian§iesD” centred at two
different translation classes of vertex points\of These cells are shown in the top part of
figure 2.

Two dual tilings arise from a fixed decompositi# = E; + E,: in 7 the windows
are projection)¢, D? of Delone cells, inZ* they are projection¥, of Voronoi cells. We
choose7 since it is in analogy to the projection of the Penrose tiling in section 4. Three klotz
cellsA, B, C are shown at the bottom of figure 2. Their projections form the #lgsBy, Cy.

Ty

il

Figure 2. The root latticeA,. Its Voronoi cellsV (¢) are hexagons centred at lattice poipt$ull
squares), its Delone cell3*, D? form two translation orbits of triangles centred at vertice of
(open and full circles). They are shown in the top part. The three rectangular klotacélsC
shown in the middle and bottom part arise from a decomposiidnr= E| + E,. ThetilingT

has the tilesd, By, C). Its window consists of two projection®¢, D4 centred at vertices of

V. The size of the window is indicated on the left-hand side by a perpendicular bar. The parallel
projectionsV of Voronoi cells (heavy lines) at lattice poingdound triplesA U B U C from below
andC U B U A from above. On parallel line sections they produce Whelusters agA | B;Cy)

or (CyBjA)). Both form domains of definition for quasiperiodic functiofi€ompatible with the
tiling. ConsecutiveV-clusters are linked by tileg or C;. A subdivision of the klotz cellst, B

is marked in the middle part by dashed lines. It yields an inversion-symmetric identical subtiling
of the two clusters.
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The parallel projection®/; of Voronoi cells centred at lattice points yield one typelof
clusters as the stringst B, C,) or (C;BjA). Both formdomains of definitiotF (7, A») for
quasiperiodic functiong compatible with the tiling. Consecutivé-clusters are linked by the
tiles A or Cy. The klotz cellS A, B) may again be subdivided by dashed lines as indicated in
the middle part of figure 2. This subdivision provides a subtiling of Botblusters which is
symmetric under local inversion.

4. DecagonalV -clusters in the Penrose-Robinson tiling from the latticed,4

We first summarize the construction of the decagon covering due to Gummelt [6]. It uses the
Penrose tilingZ” with rhombus edge lengthand Robinson decomposition together with the
deflated tilingZ; 1 with edge lengthr ~1s, again with Robinson decomposition. Selecfin
all the vertex configurationsing and mark in each one a centre point, see figure 3. From the
empire ofking it can be shown that a decagon of edge lengih forced around the centre
point, with a unique subdivision called the cartwheel [4]. It is shown by Gummelt [6] that
these cartwheel decagons yieldaveringwhich is equivalent to the Penrose tiling.

We employ the deflation sequence of tilings— 7 — 7.1, cf also [16], to redescribe
the decagons according to figure 3. We start with a thick rhombus in the first tiling. On it
we mark a point with a full square. The first deflation yieldsZirthe vertex configuration
jack. The next deflation yields iff,-: the vertex configuratioking. Thisking in Robinson
subdivision enforces the cartwheel decagon of edge lengthe marked point is maintained
in the three steps. It follows from this sequence of deflationgiieedecagon centres are fixed
at the marked points on all the thick rhombus tilesof

Turn to the method of windows and projection. We follow [2] and project the Penrose tiling
of type 7 from the root latticed4. The embedding spadg” for this lattice splits into two
2D space<E|, E, of fivefold symmetry. There are four Delone cells whose perpendicular
projections up to inversion form a small and a large pentagon. Their centres form four
translation orbits of Voronoi vertices. The Voronoi vertices are called the deep and shallow
holes [5] inthe lattice\ . We denote representatives of the two shapes of Delone cdli§ ip”
and their projections byd¢, D%. Their centres are shallow and deep holes, respectively.
Together with their mirror images they form the windows for the Penrose tiling. The klotz
cells are formed from 20 pairs of dual 2D boundaries which represent different translation
orbits. Similar as in the Fibonacci projection it can be shown that these 20 klotz cells form a

Figure 3. The PenrosetilingZ, Ay), itsinflation byz: (7;, As)

and its deflation byr—1: (7,-1, Ag). At a projected poini

(full square) from the latticé 4, a thick rhombus tile of7;, A4)
(dotted lines) converts first into a jack @, A4) (full lines) and
then into a king o{7,-1, A4) (dashed lines). The empire of the
king in Robinson decomposition forces the cartwheel decagon
(— - — line) of Conway and Gummelt. The decagons Hre
clusters, two of them form a fundamental domain for functions
f compatible with the Penrose tiling.
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Figure 4. Part of a Penrose tiling. Projected lattice poipts

are marked by full squares. They are centres of decagonal
clusters and cartwheel decagons at jack vertex configurations:
cf figure 3. These points are also located on the thick rhombus
tiles (dotted lines) of the inflated Penrose tiling.

fundamental domain undér;. The Penrose tiles are rhombic projectighsf 2D boundaries
from the Voronoi cell. Their dual* are acute and obtuse triangles, projections of 2D
boundaries from the Delone cells. vertex configuratiorof Penrose tiles is coded by an
overlap of the dual coding triangles inside a Delone window [2]. In the notation of [2], the
vertex configurations 1-3 are coded in the small pentdgdnthe vertex configurations 5-8

in the large pentago®’, . Turn then to the projection, and to theV -clusters.

Proposition 5. The (linked) V-clusters of the Penrose—Robinson tiling are decagonal
projectionsV) to position space of edge length Two decagons form a fundamental domain
F(T, Ag).

The projection is in shape equal to the wind®w of the dual triangle tiling, see section
5. For the Penrose tiling, a fundamental domaif7, A4) according to definition 2 should
contain ten thick and ten thin rhombus tiles. A single decag@aluster of edge lengthcan
cover five thick and five thin rhombus tiles. Therefore not one, but two decagprudisters,
rotated by an angles2/10 to one another, are required to foffi7, A4). Both orientations
occur in the decagon covering and from figure 4 are related to the orientations of thick rhombus
tiles from(7;, Ay).

We wish to locate the centres of these decagons by the projection method. This can be
done with the help of selected vertex configurations as follows: in the coding of the vertex
configurations inside the small and large pentagofisD” , we look forvertex configurations
from coding triangles which share a single vertexif or D% . Dualization of boundaries [13]
implies that the tiles of such a vertex configurationst belong to a single Voronoi celrhis
condition holds true for the vertex configuration 2, flaek coded inD¢, and for vertex
configuration 6, theking coded inD%. Any king in the tiling forces a jack with the same
projected lattice poirg, and so we can restrict the analysis to jacks.

We have then arrived from thB-clusters in the projection method at the decagons of
Gummelt [6] with the following qualifications.

Proposition 6.

(i) TheV-clustersV; of the Penrose tiling of edge lengthlocated at projected lattice points
q) in the vertex configurationigck, coincide with the decagons of Gummelt [6].

(i) Two decagons of edge lengthform a fundamental domai& (7, A,) for functions f
compatible with the Penrose tiling of the same edge length, not with any of its inflations
or deflations.
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(iii) The decagon edges around projected lattice poifjt®n jacks figure 4, do not always
appear as part of the rhombus tiling. The different decagonal domains of the covering
become identical with the cartwheel upon subdivision by deflatigf,te, A,).

(iv) The decagon centres are fixed to projected lattice pgipts the thick rhombus tiles of the
inflated tiling (7;, A4). Their windows are, up to perpendicular shifts from the rhombus
vertex to the lattice point, the acute triangles inside the Delone windows for this tiling.

The links betweerV/ -clusters are clearly related to the sharing of (parallel projected)
dual boundaries. The window technique allows us to characterize the linkage and the relative
frequencies and to compare with [6].

5. PentagonalD-clusters in the triangle tiling from the lattice A4

The triangle tiling [2] is the dual tiling™* from the latticeA4. The Voronoi and Delone cells

are the same as for the Penrose tiling, but the projections interchange their role. Its window
is a decagolV, . Its tiles are an acute and an obtuse golden triangle, codéd oy Penrose
rhombus tiles. There are nine vertex configurations.

Proposition 7. The Df, Dﬁ-clusters of the triangle tiling are two types of linked pentagons.
Together with their mirror images they form a fundamental dord@&i@*, A,) for the triangle
tiling. These Delone clusters form a covering of the triangle tiling.

Proof. To determine configurations of triangles belongingdtalusters we select codings for
vertex configurations by Penrose tiles in the decagon which share a single (shallow or deep
hole) vertex of the Voronoi cell. It turns out that, in the enumeration of [2], the vertices 4—7
produce small pentagona}-clusters and the vertex 2 produces Iallgﬁ}clusters. These

two types of pentagons are linked and yield a covering of the triangle pattern as shown in
figure 5. The windows for the two pentagons can be found from the combination of vertex
windows as shown in figure 6. Projections of shallow and deep holes are marked as full and
white circles. More details of the Delone windows are given in appendix A. The proof of the
covering property from the projection and window method is given in appendix B. O

The triangle tiling is applied to decagonal AICuCo in [15]. The implications of linked
pentagonab-clusters in terms of shared dual boundaries should be studied.

6. V- and D-clusters in icosahedral tilings

The three icosahedral modul®s F, I can be projected from the, F, I centred hypercubic
lattice in E®. All known icosahedral tilings are related to the canonical ones based on duality.
From the analysis of the canonical icosahedral tilings [10, 14] forRh€& lattices one can
immediately draw the following conclusion on the shape ofWh@nd D-clusters in position
space.

P lattice. The Voronoi and Delone cells of the hypercubic lattice coincide in shape and so do
their projections. The tiles are the well known thick and thin rhombohedra of edge I@ngth
Both the windows/, and theD-clustersD, are the triacontahedra of Kepler with edge length
(®. From the translation orbits [12] one can explore their relation to the fundamental domain
F(T*, P).

F lattice. The lattice F has three different translation orbits of Delone cells denoted as
D¢, D", D¢. In the tiling (7*, F), the windowV, is again the triacontahedron of Kepler
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Figure 5. Part of a triangle tiling(7*, A4). The small and large pentagons (heavy edge lines)
mark the linked Deloné)“’, D""—clusters which cover the tiling by triangles (weak edge lines if not
edge of a pentagon). TL\e four grey pentagons together form a fundamental domain of definition
F(T*, Ag) for functions compatible with the triangle tiling. They comprise the two triangles each

in ten orientations.

Figure 6. The windowsw(D%), w(D") for the small and large
pentagonalD-clusters in the triangle tiling are two regions
marked (a, b) in the decagonal window, € E; modulo

fivefold rotations. For details of the construction cf appendix A.

of edge length®. The tiles are six tetrahedra projected from 3-boundaries of the Delone
cells. The vertex configurations were studied in [14]. This tiling is used for modelling atomic
positions of AlIPdMn and is closely related to the approach of Katz and Gratias [8,9]. From
the present analysis we get three Delone clusnﬁf,le’l’, Dj. Two of them are icosahedra
with the edge length®), t @, where® = J%@ one is a dodecahedron of edge len@h
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a

Figure 7. Schematic view of the three Deloi&-clusters for the icosahedral tiling ™, F): The
three DeloneD?, D?, D¢-clusters are a dodecahedron and two icosahedra.

see figure 7. The windows for these Delabeclusters and their relation to the fundamental
domainF(7*, F) must be analysed.

In the dual tiling(7, F), the three Delone windows ai#“ , D%, DS . The tiles are two
rhombohedra and four pyramids projected from 3-boundaries of the Voronoi domains. The
Voronoi clustersy) are Kepler triacontahedra related to the fundamental dorRéin F).

Structure gquestions to be studied are the fundamental domain and covering property, the
linkage of V, D-clusters in relation to the modules and shared dual boundaries, their local
point symmetry, and atomic positions on them. In all cases the technique of windows for the
tilings, the tiles and vertex configurations, and for atomic positions is available. This allows
us to implement the project db- andV -clusters and coverings in the structure theory and in
the physics of icosahedral quasicrystals.

7. Summary and outlook

The covering project analysed here for dual tilings from lattice embedding has the following
features.

(1) Fundamental domainsThe analysis depends crucially on the notion of definition 2 of a
fundamental domain for functions on the position spAgeompatible with the tiling.

(2) Clusters The clusters should be related to the fundamental domain for functions
compatible with the tiling. This relation is given for Voronoi or Delone clusters in the 2D
Penrose and triangle tilings and must be explored for the dual 3D icosahedral tilings.

(3) Centre positions and their window3 he centre positions are assumed to be for Voronoi
clusters the parallel projected lattice point positions, for Delone clusters the parallel
projected hole positions (vertices of Voronoi cells) whose perpendicular projections fall
into the window(s) of the tiling. This property is verified for the 1D Fibonacci dnd
based tiling and for the dual 2D Penrose and triangle tilings. In all these cases the positions
and windows for the centres of the clusters are explicitly determined.

(4) Cluster recognition and linkage in the tilingsin the Fibonacci, thed,-based and
triangle tiling of the clusters appear as collections of full tiles. Their possibly alternative
compositions from these tiles and their linkage and overlaps can be unified by appropriate
subdivision with or (in case of tha,-based tiling) without the use of deflation. For the
Penrose rhombus tiling one needs one level of deflation plus the Robinson subdivision to
recognize the decagon clusters and to analyse their overlaps and linkage.
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(5) Covering property For Voronoi and Delone clusters in 1D tilings with the assumption (3)
on their centres, the covering property can be verified in an elementary way. For the dual
2D tilings the covering property can be shown from the explicit projection and window
technique (see the example in appendix B).

(6) Icosahedral clustersFor the dual 3D icosahedral tilings the Voronoi and Delone clusters
are known. The window technique is more involved but available. It must be implemented
to relate them to fundamental domains (2), to find the cluster centres and their windows
according to (3), to study the covering property (5), and to find the linkage of clusters.

Appendix A. Windows for the pentagonal covering

We present an independent analysis of the windows for the centres of pentagonal Delone
clusters in the tiling7*, A4) of section 5, using the geometry of [2]. The acute and obtuse

a

i

Dj

E, By

Figure A1. The windows for the Delon®-clusters of the pentagonal covering of section 5 modulo
the point groupD1p. The small pentagol| € E| (top, right) is formed from one acute triangle

1 and two obtuse triangles. The windows for these tiles are one thick and two thin rhombus
tiles w(r1), w(rz) in the decagonal window, € E | (top, left). Their intersection is the window
w(D?) for a vertex position of the small Delone cluster (grey). The large pentﬁﬁo& E)
(bottom, right) is formed by four acute trianglasand three obtuse triangles The windows are

four thick and three thin rhombus tiles in the decagonal window (bottom, left). Three thick and
two thin rhombus tiles (light grey) intersect in half of the windawD?) (grey) which codes the
lower vertex position of the large Delone cluster. The remaining acute and obtuse triangle at the
upper vertex of the pentagon (right) are forced by the remaining thin and thick rhombus windows
shown in the decagon (light grey, left). A reflection in a vertical line botl¥jrand E ; yields a
second version of the clustﬁﬁ and the second half of the windaw(D”) shown in figure 6.
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triangle tilesry, r, of this tiling in E; have as windowsuv(t1), w(rz) in E, the dual thick
and thin Penrose rhombus tiles appearing within the decagonal Voronoi wividowertex
configurations in the tiling are coded in this window by intersections of the rhombus windows.
For the complete list of vertices and windows we refer to [2]. In figure A1 we show the
collection of those tiles and their windows which together determine the windows for the

Delone clusterdf, Dﬁ.

Appendix B. Covering from projection and windows

Given atiling7 and a set of clusters with their centre positions,dieering propertyequires
that all parts of any tile from the tiling be covered by at least one of the clusters.

For the decagon covering of the Penrose tiliig A4) the covering property was shown
by Gummelt [6]. It was shown in section 4 that theclusters for the Penrose tiling coincide
with the decagons of Gummelt. The covering property holds by this coincidence. In what
follows we give a constructive proof from projections and windows for the covering property
of the triangle tiling by pentagonal Delone clusters. A similar constructive proof applies for
the Penrose tiling.

Proposition 8. The pentagonal Delone clustety, Dfl’ with the centre positions described in
section 5 form a covering of the triangle tiling ™, Aa4).

Proof. The tiles of this tiling are acute or obtuse golden triangles, cf figures 5, A1l and
B1. Their dual windows have the thick and thin Penrose rhombus shape w(,) and are
located in the decagonal Voronoi windod . On each rhombus we mark its shallow hole
vertex by a full circle. For a fixed orientation af z,, each windoww(#;), w(z2) appears in
the decagon in three shifted positions. These three positions are shown in figure B1.

For all other orientations under the action of the point gréyp in E;, the windows
transform under the corresponding action/&fy but now in £, [2]. For example, under a
rotation of the tiles by 2/5 their windows must be rotated by 45.

Consider next the Delone clustelg, Dﬁ’ of section 5 with their composition out of three
and seven triangle tiles respectively. In appendix A and figure Al we give for both clusters
with fixed orientation the collection of the three and seven rhombus windeos, w(z,)
within V. A comparison of the left-hand sides of figures A1 and B1Egrshows that any

ta :
E, E

Figure B1. The acute and obtuse triangle > (right) of the triangle tiling(7, A4) € Ej. Their
windowsw(z1), w(t2) in E (left) for fixed orientations are dual thick and thin Penrose rhombus
tiles in the decagoiv, . The shallow hole vertex is marked on each rhombus window by a full
circle. Each rhombus window ;) appears in three shifted positions.
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single rhombus window (7;) for a single triangle tile; in the three possible shifted positions
of figure B1 can be brought moduld; into coincidence with at least one rhombus window
w(t;) from the collection forDj or Dﬁ given in figure Al. InE this implies that for any

triangle tiler; € (7, A4) one can construct at least one Delone cluﬂﬁror Dﬁ’ that covers
this tile.
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