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Abstract. In the window approach to quasicrystals, the atomic position spaceE‖ is embedded
into a spaceEn = E‖ + E⊥. Windows are attached to points of a lattice3 ∈ En. For standard
fivefold and icosahedral tiling models, the windows are perpendicular projections of dual Voronoi
and Delone cells from3. Their cuts by the position spaceE‖mark tiles and atomic positions. In the
alternative covering approach, the position space is covered by overlapping copies of a quasi-unit
cell which carries a fixed atomic configuration. The covering and window approach to quasicrystals
are shown to be dual projects:D- andV -clusters are defined as projections to position spaceE‖
of Delone or Voronoi cells. DecagonalV -clusters in the Penrose tiling, related to the decagon
covering, and two types of pentagonalD-clusters in the triangle tiling of fivefold point symmetry
with their windows are analysed. They are linked, cover position space and have definite windows.
For functions compatible with the tilings they form domains of definition. For icosahedral tilings
theV -clusters are Kepler triacontahedra, theD-clusters are two icosahedra and one dodecahedron.

1. Introduction: windows versus coverings

The standard approach for quasicrystal structure uses the project ofatomic windows: these
are polytopes with centres located at points of the unit cell from a lattice3 in an embedding
spaceEn = E‖+E⊥. Atoms are then located on position spaceE‖ by parallel cuts through the
windows, compare Katz and Gratias [8, 9] for icosahedral examples. The alternative project
of coveringsin quasicrystals was introduced by Gummelt [6], based on earlier concepts due to
Burkov [3] and Conway [4]. The Penrose tiling was interpreted in [6] as a system of decagonal
covering clusters with overlaps. These clusters were related to the concept of aquasi-unit
cell by Jeong, Steinhardtet al [16–18]. The full quasicrystal structure is then composed from
overlapping atomic configurations on copies of the quasi-unit cell. Moreover, Steinhardtet al
interpret these atomic configurations from the point of view of local energy. This interpretation
takes up earlier work by Janot [7]. For a comment we refer to Urban [19].

What is the relation of the projects of coverings and windows to one another? What are
the covering clusters and links for a given tiling? What is the meaning of a (quasi-)unit cell of
a quasicrystal whose points, in contrast to crystals, are not related by the action of a translation
group? In the present paper we try to answer these structure questions. We confront both
projects from the point of view of an embedding space, a lattice, its Voronoi cellsV , its dual
Delone cellsDa,Db, . . . [5], and corresponding tilings. The Voronoi and Delone cells of the
lattice in the embedding space are the basis for a set of canonical tilings [10]: the windows for
these tilings are perpendicular projections of Voronoi or Delone cells.

We shall show that windows and coverings are dual projects. We define and analyse
clusters as projections to position space of Delone or Voronoi cellsDa

‖ ,D
b
‖ , . . . or V‖. We
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term themD-clusters orV -clusters, respectively. We determinedomains of definition for
functions on quasiperiodic tilingsand show that they can be related to sets ofV -clusters orD-
clusters. These concepts are introduced and illuminated in section 2 with the Fibonacci tiling,
projected from the square lattice, and in section 3 with a tiling projected from the latticeA2. In
section 4 we determine for the Penrose–Robinson tiling, projected from the latticeA4 [2], its
V -clusters and obtain the decagon covering of Gummelt [6]. In section 5 we construct for the
triangle tiling, dually projected from the latticeA4 [2], two pentagonalDa,Db-clusters and the
covering. In section 6 we sketch the clusters for dual icosahedral tilings. TheV -clusters from
the primitive andF -lattice are Kepler triacontahedra, the threeD-clusters from theF -lattice
are icosahedra or dodecahedra.

2. Clusters from Delone cells in the Fibonacci tiling

2.1. Fibonacci tiling and klotz construction

Consider the Fibonacci tiling constructed from the square lattice3 of edge lengths in E2 by
duality [11]. Its Voronoi cellsV (q) are squares centred at all lattice pointsq. Its dual Delone
cellsD are squares centred at all vertices of the Voronoi cells. All Delone cells belong to a
single translation orbit. A 2D fundamental domainF in E2 under the action of3 is provided
by a single Voronoi cellV or, equivalently, by a single Delone cellD. The 1-boundariesP of
a Voronoi cell are its four edge lines. The dual 1-boundariesP ∗ of a Delone cell are its four
edge lines. PairsP ,P ∗ of dual 1-boundaries intersect in midpoints of the edges of the squares.
Define the decompositionE2 = E‖ +E⊥ in the usual fashion:x‖ runs, w.r.t. a densest lattice
plane of3, along a line of slopeτ−1, τ = (1+

√
5)/2, respectively. Theklotz construction[13]

for the Fibonacci tiling [11] arises as follows: for each intersecting pairP , P ∗, form at its
intersection point the convex klotz cellsP⊥⊗P ∗‖ . The two klotz cells(A,B), see figure 1, are

two squares(A,B) of edge length|L| = τ |S|, |S| = s/√τ + 2, respectively, with boundaries
perpendicular or parallel toE‖. Any line with pointsx = x‖ + c⊥,−∞ < x‖ <∞ intersects
the klotz construction in a Fibonacci tilingT ∗ with the tiles(L := A‖, S := B‖). A window
for the full local isomorphism class of all tilingsT ∗may be taken as a perpendicular interval of
length|L|+ |S| centred at a lattice pointq. This interval is the perpendicular projectionV⊥(q)
of the Voronoi cell and appears in the klotz construction at all positions of lattice pointsq.

2.2. Quasiperiodic functions and fundamental domains

Atomic densities or electronic potentials in quasicrystals require functional analysis on the
position space. We recall the following relations onEn: under the geometric group action of
q ∈ 3, x, x ′ ∈ En, (q, x)→ x ′ = x +q, afundamental domainis a subsetF ∈ En which has
exactly one point from each translation orbit. The geometric group action yields for functions
f onEn the group operatorsTq : f (x) → (Tqf )(x) := f (x − q). Suppose now thatf is
periodic onEn modulo3. We define a fundamental domain forf as a subsetF ∈ En such that
any value off onEn−F is obtained by the group action. Clearly a fundamental domain for a
periodic functionf can be identified with afundamental domainfor the geometric action of3.

Proposition 1. Two klotz cells(A,B) form a fundamental domainF for functionsf onE2

periodic modulo3.

Proof. The pairs of dual boundaries underlying the cells(A,B) are representatives of different
translation orbits under3. The cells do not overlap and together have the same volume as the
Voronoi square. �
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Figure 1. The square lattice3 of edge lengths in E2 has Voronoi squaresV (q), centred at lattice
pointsq (full squares), and Delone squaresD, centred at Voronoi vertices (open circles). The lattice
admits a periodic tiling into two squares(A,B) of edge lengths|L| = τ |S|, |S|, called klotz cells
and shown on the left-hand side. The edges of these squares run along directionsx‖ horizontal,x⊥
vertical of slopeτ−1, τ with respect to a densest lattice line. A pair(A,B) of two such squares
form a fundamental domainF for the lattice. The intersection of a parallel line with the two squares
(A,B) forms a Fibonacci tilingT ∗ with tilesL = A‖, S = B‖. The window of the tiling isV⊥(q)
centred at lattice pointsq. Its size is indicated by a perpendicular bar on the left-hand side. The
Delone projectionsD‖ to position spaceE‖ centred at Voronoi vertices (heavy lines at open circles)
provide fundamental domains for functions compatible with the Fibonacci tiling. They bound pairs
A ∪ B andB ∪ A from below and above. On parallel line sections they give rise toD-clusters
(LS) or (SL). A second periodic tiling inE2 with two rectangles(A′, B ′) is shown on the lower
right-hand side (dashed lines). Its intersection with a horizontal linex = x‖ +c⊥,−∞ < x‖ <∞,
yields a deflated Fibonacci tilingT ∗

τ−1 with tiles (L′, S′) of length scaled by the factorτ−1. The
union of the two tilings is shown in the middle part. In the parallel subtiling from this union, any
cluster(LS), (SL) of T ∗ gets the symmetric subdivision(L′S′L′), and consecutive clusters are
disjoint or linked by a tileL′.

Quasiperiodic functions on a parallel line sectionare characterized as follows: take
a functionf , defined by its values on the two cells(A,B) (or on any other equivalent
fundamental domain)F , and repeated onE2 modulo3. The restriction off to its values
on a linex = x‖ + c⊥,−∞ < x‖ <∞ gives rise to a quasiperiodic function on this line. The
fundamental domain for a quasiperiodic functionthat determines its value everywhere on the
1D horizontal line is seen in the embedding spaceE2 as a 2D fundamental domain w.r.t. the
action of3.

Quasiperiodic functions of this general type do not take the same values on different
passages of the line throughA or throughB, and so they are not compatible with the Fibonacci
tiling T ∗. The class of quasiperiodic functionsf compatible with the tilingT ∗ on the line
E‖ must have the following restricted property, as discussed for example in [11]: on each of
the two chosen klotz cells(A,B), its values must beindependent ofx⊥. These values by
repetition under3 generate on any parallel line section a quasiperiodic function which takes
the same values on each passage throughA or B. We refer to Arnold [1] for a discussion of
quasiperiodic functions along similar lines.

Definition 2. Let the tilingT consist of a minimal finite set〈pi〉 ∈ E‖ of prototilespi and
their translates appearing inT . A fundamental domain for a quasiperiodic functionf on
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E‖ compatible with the tiling is a subset of pointsx‖ ∈ E‖ which contains one and only one
translate inT of any point from any prototile. A fundamental domain with this property will be
denoted byF(T ,3). It depends on the tilingT , the lattice3, and the projectionEn = E‖+E⊥.
The volume of the fundamental domain is|F(T ,3)| = ∑i |pi |. For the Fibonacci tiling we
find the following proposition.

Proposition 3. The fundamental domainF(T ∗,3) for any functionf compatible with the
Fibonacci tiling T ∗, can be taken as a line interval inE‖ of length|L| + |S|, consisting of
a short and a long interval of the tilingT ∗. The values off on the two intervals are then
extended on each klotz cell(A,B) to a 2D function independent ofx⊥. By repetition modulo
3 and intersection with a parallel line they give rise to a particular quasiperiodic function.

2.3. LinkedD-clusters

The parallel projectionsD‖ of the Delone squares are line sections of length|L| + |S|. These
projections appear in the klotz tiling at the Delone centres. Each one separates a pair(B,A)

on top from a pair(A,B) of klotz cells at the bottom. The boundary line itself we assign
for uniqueness to the top pair of klotz cells. If a horizontal intersection line passes the top or
bottom pair, any one of the two cuts provides a fundamental domainF(T ∗,3). Both the (SL)
and the (LS) combination we term aD-cluster.

Proposition 4. The Fibonacci tiling(T ∗, (L, S)) is equivalent to a chain of linkedD-clusters of
type(LS), (SL). The clusters can be locally determined: Each one is equivalent to the parallel
projectionD‖ of a Delone cell and forms a fundamental domainF(T ∗,3). Consecutive
clusters are disjoint or linked by a tileS in the form(L(S)L).

Proof. Consult figure 1: in the tilingT ∗, disjoint clusters form from all consecutive strings (LS)
except for the string(LSLLS). This string is interpreted with three clusters as(L(S)L)(LS),
with the first two clusters linked by the tileS. �

2.4. Symmetric subtiling and windows forD-clusters

TheD-clusters as parallel projectionsD‖ carry the two alternative subtilings(LS), (SL). We
can remove this asymmetry by use of the deflated subtilingT ∗

τ−1. Its new rectangular klotz cells
(A′, B ′) inE2 are shown with dashed lines in the lower part of figure 1. The deflated tiles from
parallel sections are(L′, S ′) = τ−1(L, S). In the union of the original and deflated tiling, all
projectionsD‖ and hence allD-clusters get the symmetric subtiling(LS), (SL)→ (L′S ′L′).
From the point of view of the deflated tiling, all strings(L′L′) separate disjoint clusters, all
strings(S ′L′S ′)mark consecutive clusters linked by a tileL′. Note that theD-clusters are not
fundamental domains with repect to the deflated tiling! So far we have not implemented the
action of the point group, generated here by inversion, on functionsf . This would require
restricting their domain to the counterpart of the asymmetric unit in the terminology of periodic
crystallography.

The deflated tilingT ∗
τ−1 allows us to determine thewindow for centres ofD-clusters: the

centres correspond to the midpoints of its tilesS ′. Therefore, their windows are the projections
B ′⊥ of length|L| of the rectanglesB ′, centred at the vertices of Voronoi cells in figure 1.
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3. V -clusters in a tiling with the lattice A2

The klotz construction uses the duality between Voronoi and Delone cells for a single lattice.
For illustration of duality we choose the root latticeA2 inE2. Its Voronoi cellsV are hexagons
centred at lattice points, its Delone cells are two types of trianglesDa,Db centred at two
different translation classes of vertex points ofV . These cells are shown in the top part of
figure 2.

Two dual tilings arise from a fixed decompositionE2 = E‖ + E⊥: in T the windows
are projectionsDa

⊥,D
b
⊥ of Delone cells, inT ∗ they are projectionsV⊥ of Voronoi cells. We

chooseT since it is in analogy to the projection of the Penrose tiling in section 4. Three klotz
cellsA,B,C are shown at the bottom of figure 2. Their projections form the tilesA‖, B‖, C‖.

Figure 2. The root latticeA2. Its Voronoi cellsV (q) are hexagons centred at lattice pointsq (full
squares), its Delone cellsDa,Db form two translation orbits of triangles centred at vertices ofV

(open and full circles). They are shown in the top part. The three rectangular klotz cellsA,B,C

shown in the middle and bottom part arise from a decompositionE2 = E‖ + E⊥. The tiling T
has the tilesA‖, B‖, C‖. Its window consists of two projectionsDa

⊥,D
b
⊥ centred at vertices of

V . The size of the window is indicated on the left-hand side by a perpendicular bar. The parallel
projectionsV‖ of Voronoi cells (heavy lines) at lattice pointsq bound triplesA∪B ∪C from below
andC ∪ B ∪ A from above. On parallel line sections they produce theV -clusters as(A‖B‖C‖)
or (C‖B‖A‖). Both form domains of definition for quasiperiodic functionsf compatible with the
tiling. ConsecutiveV -clusters are linked by tilesA‖ or C‖. A subdivision of the klotz cellsA,B
is marked in the middle part by dashed lines. It yields an inversion-symmetric identical subtiling
of the two clusters.
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The parallel projectionsV‖ of Voronoi cells centred at lattice points yield one type ofV -
clusters as the strings(A‖B‖C‖) or (C‖B‖A‖). Both formdomains of definitionF(T , A2) for
quasiperiodic functionsf compatible with the tiling. ConsecutiveV -clusters are linked by the
tilesA‖ orC‖. The klotz cells(A,B)may again be subdivided by dashed lines as indicated in
the middle part of figure 2. This subdivision provides a subtiling of bothV -clusters which is
symmetric under local inversion.

4. DecagonalV -clusters in the Penrose-Robinson tiling from the latticeA4

We first summarize the construction of the decagon covering due to Gummelt [6]. It uses the
Penrose tilingT with rhombus edge lengths and Robinson decomposition together with the
deflated tilingTτ−1 with edge lengthτ−1s, again with Robinson decomposition. Select inTτ−1

all the vertex configurationsking and mark in each one a centre point, see figure 3. From the
empire ofking it can be shown that a decagon of edge lengths is forced around the centre
point, with a unique subdivision called the cartwheel [4]. It is shown by Gummelt [6] that
these cartwheel decagons yield acoveringwhich is equivalent to the Penrose tiling.

We employ the deflation sequence of tilingsTτ → T → Tτ−1, cf also [16], to redescribe
the decagons according to figure 3. We start with a thick rhombus in the first tiling. On it
we mark a point with a full square. The first deflation yields inT the vertex configuration
jack. The next deflation yields inTτ−1 the vertex configurationking. This king in Robinson
subdivision enforces the cartwheel decagon of edge lengths. The marked point is maintained
in the three steps. It follows from this sequence of deflations thatthe decagon centres are fixed
at the marked points on all the thick rhombus tiles ofTτ .

Turn to the method of windows and projection. We follow [2] and project the Penrose tiling
of typeT from the root latticeA4. The embedding spaceE4 for this lattice splits into two
2D spacesE‖, E⊥ of fivefold symmetry. There are four Delone cells whose perpendicular
projections up to inversion form a small and a large pentagon. Their centres form four
translation orbits of Voronoi vertices. The Voronoi vertices are called the deep and shallow
holes [5] in the lattice3. We denote representatives of the two shapes of Delone cells byDa,Db

and their projections byDa
⊥,D

b
⊥. Their centres are shallow and deep holes, respectively.

Together with their mirror images they form the windows for the Penrose tiling. The klotz
cells are formed from 20 pairs of dual 2D boundaries which represent different translation
orbits. Similar as in the Fibonacci projection it can be shown that these 20 klotz cells form a

Figure 3. The Penrose tiling(T , A4), its inflation byτ : (Tτ , A4)

and its deflation byτ−1: (Tτ−1, A4). At a projected pointq‖
(full square) from the latticeA4, a thick rhombus tile of(Tτ , A4)

(dotted lines) converts first into a jack of(T , A4) (full lines) and
then into a king of(Tτ−1, A4) (dashed lines). The empire of the
king in Robinson decomposition forces the cartwheel decagon
(— ·— line) of Conway and Gummelt. The decagons areV -
clusters, two of them form a fundamental domain for functions
f compatible with the Penrose tiling.
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Figure 4. Part of a Penrose tiling. Projected lattice pointsq‖
are marked by full squares. They are centres of decagonalV -
clusters and cartwheel decagons at jack vertex configurations:
cf figure 3. These points are also located on the thick rhombus
tiles (dotted lines) of the inflated Penrose tiling.

fundamental domain underA4. The Penrose tiles are rhombic projectionsP of 2D boundaries
from the Voronoi cell. Their dualsP ∗ are acute and obtuse triangles, projections of 2D
boundaries from the Delone cells. Avertex configurationof Penrose tiles is coded by an
overlap of the dual coding triangles inside a Delone window [2]. In the notation of [2], the
vertex configurations 1–3 are coded in the small pentagonDa

⊥, the vertex configurations 5–8
in the large pentagonDb

⊥. Turn then to the projectionsV‖ and to theV -clusters.

Proposition 5. The (linked) V -clusters of the Penrose–Robinson tiling are decagonal
projectionsV‖ to position space of edge lengths. Two decagons form a fundamental domain
F(T , A4).

The projection is in shape equal to the windowV⊥ of the dual triangle tiling, see section
5. For the Penrose tiling, a fundamental domainF(T , A4) according to definition 2 should
contain ten thick and ten thin rhombus tiles. A single decagonalV‖-cluster of edge lengths can
cover five thick and five thin rhombus tiles. Therefore not one, but two decagonalV‖-clusters,
rotated by an angle 2π/10 to one another, are required to formF(T , A4). Both orientations
occur in the decagon covering and from figure 4 are related to the orientations of thick rhombus
tiles from(Tτ , A4).

We wish to locate the centres of these decagons by the projection method. This can be
done with the help of selected vertex configurations as follows: in the coding of the vertex
configurations inside the small and large pentagonsDa

⊥,D
b
⊥, we look forvertex configurations

from coding triangles which share a single vertex ofDa
⊥ orDb

⊥. Dualization of boundaries [13]
implies that the tiles of such a vertex configurationmust belong to a single Voronoi cell. This
condition holds true for the vertex configuration 2, thejack coded inDa

⊥, and for vertex
configuration 6, theking coded inDb

⊥. Any king in the tiling forces a jack with the same
projected lattice pointq‖, and so we can restrict the analysis to jacks.

We have then arrived from theV -clusters in the projection method at the decagons of
Gummelt [6] with the following qualifications.

Proposition 6.

(i) TheV -clustersV‖ of the Penrose tiling of edge lengths, located at projected lattice points
q‖ in the vertex configurationsjack, coincide with the decagons of Gummelt [6].

(ii) Two decagons of edge lengths form a fundamental domainF(T , A4) for functionsf
compatible with the Penrose tiling of the same edge length, not with any of its inflations
or deflations.
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(iii) The decagon edges around projected lattice pointsq‖ on jacks, figure 4, do not always
appear as part of the rhombus tiling. The different decagonal domains of the covering
become identical with the cartwheel upon subdivision by deflation to(Tτ−1, A4).

(iv) The decagon centres are fixed to projected lattice pointsq‖ on the thick rhombus tiles of the
inflated tiling(Tτ , A4). Their windows are, up to perpendicular shifts from the rhombus
vertex to the lattice point, the acute triangles inside the Delone windows for this tiling.

The links betweenV -clusters are clearly related to the sharing of (parallel projected)
dual boundaries. The window technique allows us to characterize the linkage and the relative
frequencies and to compare with [6].

5. PentagonalD-clusters in the triangle tiling from the lattice A4

The triangle tiling [2] is the dual tilingT ∗ from the latticeA4. The Voronoi and Delone cells
are the same as for the Penrose tiling, but the projections interchange their role. Its window
is a decagonV⊥. Its tiles are an acute and an obtuse golden triangle, coded inE⊥ by Penrose
rhombus tiles. There are nine vertex configurations.

Proposition 7. TheDa
‖ ,D

b
‖ -clusters of the triangle tiling are two types of linked pentagons.

Together with their mirror images they form a fundamental domainF(T ∗, A4) for the triangle
tiling. These Delone clusters form a covering of the triangle tiling.

Proof. To determine configurations of triangles belonging toD-clusters we select codings for
vertex configurations by Penrose tiles in the decagon which share a single (shallow or deep
hole) vertex of the Voronoi cell. It turns out that, in the enumeration of [2], the vertices 4–7
produce small pentagonalDa

‖ -clusters and the vertex 2 produces largeDb
‖ -clusters. These

two types of pentagons are linked and yield a covering of the triangle pattern as shown in
figure 5. The windows for the two pentagons can be found from the combination of vertex
windows as shown in figure 6. Projections of shallow and deep holes are marked as full and
white circles. More details of the Delone windows are given in appendix A. The proof of the
covering property from the projection and window method is given in appendix B. �

The triangle tiling is applied to decagonal AlCuCo in [15]. The implications of linked
pentagonalD-clusters in terms of shared dual boundaries should be studied.

6. V - andD-clusters in icosahedral tilings

The three icosahedral modulesP, F, I can be projected from theP, F, I centred hypercubic
lattice inE6. All known icosahedral tilings are related to the canonical ones based on duality.
From the analysis of the canonical icosahedral tilings [10, 14] for theP, F lattices one can
immediately draw the following conclusion on the shape of theV - andD-clusters in position
space.

P lattice. The Voronoi and Delone cells of the hypercubic lattice coincide in shape and so do
their projections. The tiles are the well known thick and thin rhombohedra of edge length©5 .
Both the windowsV⊥ and theD-clustersD‖ are the triacontahedra of Kepler with edge length
©5 . From the translation orbits [12] one can explore their relation to the fundamental domain
F(T ∗, P ).

F lattice. The latticeF has three different translation orbits of Delone cells denoted as
Da,Db,Dc. In the tiling (T ∗, F ), the windowV⊥ is again the triacontahedron of Kepler
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Figure 5. Part of a triangle tiling(T ∗, A4). The small and large pentagons (heavy edge lines)
mark the linked DeloneDa

‖ ,D
b
‖ -clusters which cover the tiling by triangles (weak edge lines if not

edge of a pentagon). The four grey pentagons together form a fundamental domain of definition
F(T ∗, A4) for functions compatible with the triangle tiling. They comprise the two triangles each
in ten orientations.

Figure 6. The windowsw(Da),w(Db) for the small and large
pentagonalD-clusters in the triangle tiling are two regions
marked (a, b) in the decagonal windowV⊥ ∈ E⊥ modulo
fivefold rotations. For details of the construction cf appendix A.

of edge length©5 . The tiles are six tetrahedra projected from 3-boundaries of the Delone
cells. The vertex configurations were studied in [14]. This tiling is used for modelling atomic
positions of AlPdMn and is closely related to the approach of Katz and Gratias [8, 9]. From
the present analysis we get three Delone clustersDa

‖ ,D
b
‖ ,D

c
‖. Two of them are icosahedra

with the edge lengths©2 , τ©2 , where©2 = 2√
τ+2
©5 , one is a dodecahedron of edge length©2 ,
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Figure 7. Schematic view of the three DeloneD-clusters for the icosahedral tiling(T ∗, F ): The
three DeloneDa,Db,Dc-clusters are a dodecahedron and two icosahedra.

see figure 7. The windows for these DeloneD-clusters and their relation to the fundamental
domainF(T ∗, F ) must be analysed.

In the dual tiling(T , F ), the three Delone windows areDa
⊥,D

b
⊥,D

c
⊥. The tiles are two

rhombohedra and four pyramids projected from 3-boundaries of the Voronoi domains. The
Voronoi clustersV‖ are Kepler triacontahedra related to the fundamental domainF(T , F ).

Structure questions to be studied are the fundamental domain and covering property, the
linkage ofV,D-clusters in relation to the modules and shared dual boundaries, their local
point symmetry, and atomic positions on them. In all cases the technique of windows for the
tilings, the tiles and vertex configurations, and for atomic positions is available. This allows
us to implement the project ofD- andV -clusters and coverings in the structure theory and in
the physics of icosahedral quasicrystals.

7. Summary and outlook

The covering project analysed here for dual tilings from lattice embedding has the following
features.

(1) Fundamental domains. The analysis depends crucially on the notion of definition 2 of a
fundamental domain for functions on the position spaceE‖ compatible with the tiling.

(2) Clusters. The clusters should be related to the fundamental domain for functions
compatible with the tiling. This relation is given for Voronoi or Delone clusters in the 2D
Penrose and triangle tilings and must be explored for the dual 3D icosahedral tilings.

(3) Centre positions and their windows. The centre positions are assumed to be for Voronoi
clusters the parallel projected lattice point positions, for Delone clusters the parallel
projected hole positions (vertices of Voronoi cells) whose perpendicular projections fall
into the window(s) of the tiling. This property is verified for the 1D Fibonacci andA2-
based tiling and for the dual 2D Penrose and triangle tilings. In all these cases the positions
and windows for the centres of the clusters are explicitly determined.

(4) Cluster recognition and linkage in the tilings. In the Fibonacci, theA2-based and
triangle tiling of the clusters appear as collections of full tiles. Their possibly alternative
compositions from these tiles and their linkage and overlaps can be unified by appropriate
subdivision with or (in case of theA2-based tiling) without the use of deflation. For the
Penrose rhombus tiling one needs one level of deflation plus the Robinson subdivision to
recognize the decagon clusters and to analyse their overlaps and linkage.
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(5) Covering property. For Voronoi and Delone clusters in 1D tilings with the assumption (3)
on their centres, the covering property can be verified in an elementary way. For the dual
2D tilings the covering property can be shown from the explicit projection and window
technique (see the example in appendix B).

(6) Icosahedral clusters. For the dual 3D icosahedral tilings the Voronoi and Delone clusters
are known. The window technique is more involved but available. It must be implemented
to relate them to fundamental domains (2), to find the cluster centres and their windows
according to (3), to study the covering property (5), and to find the linkage of clusters.

Appendix A. Windows for the pentagonal covering

We present an independent analysis of the windows for the centres of pentagonal Delone
clusters in the tiling(T ∗, A4) of section 5, using the geometry of [2]. The acute and obtuse

Figure A1. The windows for the DeloneD-clusters of the pentagonal covering of section 5 modulo
the point groupD10. The small pentagonDa

‖ ∈ E‖ (top, right) is formed from one acute triangle
t1 and two obtuse trianglest2. The windows for these tiles are one thick and two thin rhombus
tilesw(t1), w(t2) in the decagonal windowV⊥ ∈ E⊥ (top, left). Their intersection is the window
w(Da) for a vertex position of the small Delone cluster (grey). The large pentagonDb

‖ ∈ E‖
(bottom, right) is formed by four acute trianglest1 and three obtuse trianglest2. The windows are
four thick and three thin rhombus tiles in the decagonal window (bottom, left). Three thick and
two thin rhombus tiles (light grey) intersect in half of the windoww(Db) (grey) which codes the
lower vertex position of the large Delone cluster. The remaining acute and obtuse triangle at the
upper vertex of the pentagon (right) are forced by the remaining thin and thick rhombus windows
shown in the decagon (light grey, left). A reflection in a vertical line both inE‖ andE⊥ yields a
second version of the clusterDb

‖ and the second half of the windoww(Db) shown in figure 6.
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triangle tilest1, t2 of this tiling in E‖ have as windowsw(t1), w(t2) in E⊥ the dual thick
and thin Penrose rhombus tiles appearing within the decagonal Voronoi windowV⊥. Vertex
configurations in the tiling are coded in this window by intersections of the rhombus windows.
For the complete list of vertices and windows we refer to [2]. In figure A1 we show the
collection of those tiles and their windows which together determine the windows for the
Delone clustersDa

‖ ,D
b
‖ .

Appendix B. Covering from projection and windows

Given a tilingT and a set of clusters with their centre positions, thecovering propertyrequires
that all parts of any tile from the tiling be covered by at least one of the clusters.

For the decagon covering of the Penrose tiling(T , A4) the covering property was shown
by Gummelt [6]. It was shown in section 4 that theV -clusters for the Penrose tiling coincide
with the decagons of Gummelt. The covering property holds by this coincidence. In what
follows we give a constructive proof from projections and windows for the covering property
of the triangle tiling by pentagonal Delone clusters. A similar constructive proof applies for
the Penrose tiling.

Proposition 8. The pentagonal Delone clustersDa
‖ ,D

b
‖ with the centre positions described in

section 5 form a covering of the triangle tiling(T ∗, A4).

Proof. The tiles of this tiling are acute or obtuse golden trianglest1, t2, cf figures 5, A1 and
B1. Their dual windows have the thick and thin Penrose rhombus shapew(t1), w(t2) and are
located in the decagonal Voronoi windowV⊥. On each rhombus we mark its shallow hole
vertex by a full circle. For a fixed orientation oft1, t2, each windoww(t1), w(t2) appears in
the decagon in three shifted positions. These three positions are shown in figure B1.

For all other orientations under the action of the point groupD10 in E‖, the windows
transform under the corresponding action ofD10 but now inE⊥ [2]. For example, under a
rotation of the tiles by 2π/5 their windows must be rotated by 4π/5.

Consider next the Delone clustersDa
‖ ,D

b
‖ of section 5 with their composition out of three

and seven triangle tiles respectively. In appendix A and figure A1 we give for both clusters
with fixed orientation the collection of the three and seven rhombus windowsw(t1), w(t2)

within V⊥. A comparison of the left-hand sides of figures A1 and B1 forE⊥ shows that any

Figure B1. The acute and obtuse trianglet1, t2 (right) of the triangle tiling(T , A4) ∈ E‖. Their
windowsw(t1), w(t2) in E⊥ (left) for fixed orientations are dual thick and thin Penrose rhombus
tiles in the decagonV⊥. The shallow hole vertex is marked on each rhombus window by a full
circle. Each rhombus windoww(ti ) appears in three shifted positions.
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single rhombus windoww(ti) for a single triangle tileti in the three possible shifted positions
of figure B1 can be brought moduloD10 into coincidence with at least one rhombus window
w(tj ) from the collection forDa

‖ or Db
‖ given in figure A1. InE‖ this implies that for any

triangle tileti ∈ (T , A4) one can construct at least one Delone clusterDa
‖ orDb

‖ that covers
this tile. �
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